Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Sci Immunol ; 9(93): eade6256, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457513

RESUMO

Programmed cell death-1 (PD-1) is a potent immune checkpoint receptor on T lymphocytes. Upon engagement by its ligands, PD-L1 or PD-L2, PD-1 inhibits T cell activation and can promote immune tolerance. Antagonism of PD-1 signaling has proven effective in cancer immunotherapy, and conversely, agonists of the receptor may have a role in treating autoimmune disease. Some immune receptors function as dimers, but PD-1 has been considered monomeric. Here, we show that PD-1 and its ligands form dimers as a consequence of transmembrane domain interactions and that propensity for dimerization correlates with the ability of PD-1 to inhibit immune responses, antitumor immunity, cytotoxic T cell function, and autoimmune tissue destruction. These observations contribute to our understanding of the PD-1 axis and how it can potentially be manipulated for improved treatment of cancer and autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Tolerância Imunológica , Ativação Linfocitária , Domínios Proteicos
2.
bioRxiv ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37662387

RESUMO

All mammalian organs depend upon resident macrophage populations to coordinate repair processes and facilitate tissue-specific functions1-3. Recent work has established that functionally distinct macrophage populations reside in discrete tissue niches and are replenished through some combination of local proliferation and monocyte recruitment4,5. Moreover, decline in macrophage abundance and function in tissues has been shown to contribute to many age-associated pathologies, such as atherosclerosis, cancer, and neurodegeneration6-8. Despite these advances, the cellular mechanisms that coordinate macrophage organization and replenishment within an aging tissue niche remain largely unknown. Here we show that capillary-associated macrophages (CAMs) are selectively lost over time, which contributes to impaired vascular repair and tissue perfusion in older mice. To investigate resident macrophage behavior in vivo, we have employed intravital two-photon microscopy to non-invasively image in live mice the skin capillary plexus, a spatially well-defined model of niche aging that undergoes rarefication and functional decline with age. We find that CAMs are lost with age at a rate that outpaces that of capillary loss, leading to the progressive accumulation of capillary niches without an associated macrophage in both mice and humans. Phagocytic activity of CAMs was locally required to repair obstructed capillary blood flow, leaving macrophage-less niches selectively vulnerable to both homeostatic and injury-induced loss in blood flow. Our work demonstrates that homeostatic renewal of resident macrophages is not as finely tuned as has been previously suggested9-11. Specifically, we found that neighboring macrophages do not proliferate or reorganize sufficiently to maintain an optimal population across the skin capillary niche in the absence of additional cues from acute tissue damage or increased abundance of growth factors, such as colony stimulating factor 1 (CSF1). Such limitations in homeostatic renewal and organization of various niche-resident cell types are potentially early contributors to tissue aging, which may provide novel opportunities for future therapeutic interventions.

3.
Nat Immunol ; 24(10): 1725-1734, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37735591

RESUMO

The immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we used multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after immunization with the mRNA vaccine BNT162b2. Our data indicated distinct subpopulations of CD8+ T cells, which reliably appeared 28 days after prime vaccination. Using a suite of cross-modality integration tools, we defined their transcriptome, accessible chromatin landscape and immunophenotype, and we identified unique biomarkers within each modality. We further showed that this vaccine-induced population was SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we identified these CD8+ T cell populations in scRNA-seq datasets from COVID-19 patients and found that their relative frequency and differentiation outcomes were predictive of subsequent clinical outcomes.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais
4.
Sci Transl Med ; 15(706): eabn4722, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494472

RESUMO

Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Inflamação , Fenótipo , Redes e Vias Metabólicas
5.
Am J Transplant ; 23(8): 1102-1115, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36878433

RESUMO

Damage to the gastrointestinal tract following allogeneic hematopoietic stem cell transplantation is a significant contributor to the severity and perpetuation of graft-versus-host disease. In preclinical models and clinical trials, we showed that infusing high numbers of regulatory T cells reduces graft-versus-host disease incidence. Despite no change in in vitro suppressive function, transfer of ex vivo expanded regulatory T cells transduced to overexpress G protein-coupled receptor 15 or C-C motif chemokine receptor 9, specific homing receptors for colon or small intestine, respectively, lessened graft-versus-host disease severity in mice. Increased regulatory T cell frequency and retention within the gastrointestinal tissues of mice that received gut homing T cells correlated with lower inflammation and gut damage early post-transplant, decreased graft-versus-host disease severity, and prolonged survival compared with those receiving control transduced regulatory T cells. These data provide evidence that enforced targeting of ex vivo expanded regulatory T cells to the gastrointestinal tract diminishes gut injury and is associated with decreased graft-versus-host disease severity.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Linfócitos T Reguladores , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Intestino Delgado , Inflamação
6.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747786

RESUMO

The human immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we utilize multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after BNT162b2 immunization. Our data reveal distinct subpopulations of CD8 + T cells which reliably appear 28 days after prime vaccination (7 days post boost). Using a suite of cross-modality integration tools, we define their transcriptome, accessible chromatin landscape, and immunophenotype, and identify unique biomarkers within each modality. By leveraging DNA-oligo-tagged peptide-MHC multimers and T cell receptor sequencing, we demonstrate that this vaccine-induced population is SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we also identify these CD8 + populations in scRNA-seq datasets from COVID-19 patients and find that their relative frequency and differentiation outcomes are predictive of subsequent clinical outcomes. Our work contributes to our understanding of T cell immunity, and highlights the potential for integrative and multimodal analysis to characterize rare cell populations.

7.
Nat Immunol ; 24(1): 19-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596896

RESUMO

Since their discovery almost two decades ago, interleukin-17-producing CD4+ T cells (TH17 cells) have been implicated in the pathogenesis of multiple autoimmune and inflammatory disorders. In addition, TH17 cells have been found to play an important role in tissue homeostasis, especially in the intestinal mucosa. Recently, the use of single-cell technologies, along with fate mapping and various mutant mouse models, has led to substantial progress in the understanding of TH17 cell heterogeneity in tissues and of TH17 cell plasticity leading to alternative T cell states and differing functions. In this Review, we discuss the heterogeneity of TH17 cells and the role of this heterogeneity in diverse functions of TH17 cells from homeostasis to tissue inflammation. In addition, we discuss TH17 cell plasticity and its incorporation into the current understanding of T cell subsets and alternative views on the role of TH17 cells in autoimmune and inflammatory diseases.


Assuntos
Inflamação , Células Th17 , Animais , Camundongos , Plasticidade Celular , Subpopulações de Linfócitos T/metabolismo , Modelos Animais de Doenças
8.
Nat Commun ; 13(1): 5926, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319618

RESUMO

Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.


Assuntos
Bacteriemia , COVID-19 , Coinfecção , Microbioma Gastrointestinal , Camundongos , Animais , Disbiose/microbiologia , Antibacterianos , SARS-CoV-2 , Bactérias
9.
Sci Transl Med ; 14(668): eadd3901, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36288277

RESUMO

An arthritogenic strain of Subdoligranulum in the gut elicits a local immune response, a precursor to systemic autoimmunity (Chriswell et al.).


Assuntos
Autoimunidade , Microbioma Gastrointestinal
10.
Immunity ; 55(11): 2027-2043.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36243007

RESUMO

T helper 17 (Th17) cells regulate mucosal barrier defenses but also promote multiple autoinflammatory diseases. Although many molecular determinants of Th17 cell differentiation have been elucidated, the transcriptional programs that sustain Th17 cells in vivo remain obscure. The transcription factor RORγt is critical for Th17 cell differentiation; however, it is not clear whether the closely related RORα, which is co-expressed in Th17 cells, has a distinct role. Here, we demonstrated that although dispensable for Th17 cell differentiation, RORα was necessary for optimal Th17 responses in peripheral tissues. The absence of RORα in T cells led to reductions in both RORγt expression and effector function among Th17 cells. Cooperative binding of RORα and RORγt to a previously unidentified Rorc cis-regulatory element was essential for Th17 lineage maintenance in vivo. These data point to a non-redundant role of RORα in Th17 lineage maintenance via reinforcement of the RORγt transcriptional program.


Assuntos
Encefalomielite Autoimune Experimental , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Diferenciação Celular , Encefalomielite Autoimune Experimental/metabolismo , Regulação da Expressão Gênica , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17/metabolismo , Fatores de Transcrição/metabolismo
12.
Nature ; 610(7933): 737-743, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071167

RESUMO

The mutualistic relationship of gut-resident microbiota and the host immune system promotes homeostasis that ensures maintenance of the microbial community and of a largely non-aggressive immune cell compartment1,2. The consequences of disturbing this balance include proximal inflammatory conditions, such as Crohn's disease, and systemic illnesses. This equilibrium is achieved in part through the induction of both effector and suppressor arms of the adaptive immune system. Helicobacter species induce T regulatory (Treg) and T follicular helper (TFH) cells under homeostatic conditions, but induce inflammatory T helper 17 (TH17) cells when induced Treg (iTreg) cells are compromised3,4. How Helicobacter and other gut bacteria direct T cells to adopt distinct functions remains poorly understood. Here we investigated the cells and molecular components required for iTreg cell differentiation. We found that antigen presentation by cells expressing RORγt, rather than by classical dendritic cells, was required and sufficient for induction of Treg cells. These RORγt+ cells-probably type 3 innate lymphoid cells and/or Janus cells5-require the antigen-presentation machinery, the chemokine receptor CCR7 and the TGFß activator αv integrin. In the absence of any of these factors, there was expansion of pathogenic TH17 cells instead of iTreg cells, induced by CCR7-independent antigen-presenting cells. Thus, intestinal commensal microbes and their products target multiple antigen-presenting cells with pre-determined features suited to directing appropriate T cell differentiation programmes, rather than a common antigen-presenting cell that they endow with appropriate functions.


Assuntos
Diferenciação Celular , Microbioma Gastrointestinal , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Linfócitos T Reguladores , Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Homeostase , Imunidade Inata , Integrina alfaV/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores CCR7/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia
13.
Nat Commun ; 13(1): 1477, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304452

RESUMO

The epigenetic patterns that are established during early thymic development might determine mature T cell physiology and function, but the molecular basis and topography of the genetic elements involved are not fully known. Here we show, using the Cd4 locus as a paradigm for early developmental programming, that DNA demethylation during thymic development licenses a novel stimulus-responsive element that is critical for the maintenance of Cd4 gene expression in effector T cells. We document the importance of maintaining high CD4 expression during parasitic infection and show that by driving transcription, this stimulus-responsive element allows for the maintenance of histone H3K4me3 levels during T cell replication, which is critical for preventing de novo DNA methylation at the Cd4 promoter. A failure to undergo epigenetic programming during development leads to gene silencing during effector T cell replication. Our study thus provides evidence of early developmental events shaping the functional fitness of mature effector T cells.


Assuntos
Desmetilação do DNA , Metilação de DNA , Linfócitos T CD4-Positivos/metabolismo , Regiões Promotoras Genéticas/genética
14.
bioRxiv ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262080

RESUMO

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.

15.
Sci Immunol ; 6(64): eabg7506, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597123

RESUMO

Macrophages are an essential part of tissue development and physiology. Perivascular macrophages have been described in tissues and appear to play a role in development and disease processes, although it remains unclear what the key features of these cells are. Here, we identify a subpopulation of perivascular macrophages in several organs, characterized by their dependence on the transcription factor c-MAF and displaying nonconventional macrophage markers including LYVE1, folate receptor 2, and CD38. Conditional deletion of c-MAF in macrophage lineages caused ablation of perivascular macrophages in the brain and altered muscularis macrophages program in the intestine. In the white adipose tissue (WAT), c-MAF­deficient perivascular macrophages displayed an altered gene expression profile, which was linked to an increased vascular branching. Upon feeding high-fat diet (HFD), mice with c-MAF­deficient macrophages showed improved metabolic parameters compared with wild-type mice, including less weight gain, greater glucose tolerance, and reduced inflammatory cell profile in WAT. These results define c-MAF as a central regulator of the perivascular macrophage transcriptional program in vivo and reveal an important role for this tissue-resident macrophage population in the regulation of metabolic syndrome.


Assuntos
Dieta , Macrófagos/metabolismo , Síndrome Metabólica/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Tecido Adiposo/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos
16.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473197

RESUMO

TGF-ß signaling is fundamental for both Th17 and regulatory T (Treg) cell differentiation. However, these cells differ in requirements for downstream signaling components, such as SMAD effectors. To further characterize mechanisms that distinguish TGF-ß signaling requirements for Th17 and Treg cell differentiation, we investigated the role of Arkadia (RNF111), an E3 ubiquitin ligase that mediates TGF-ß signaling during development. Inactivation of Arkadia in CD4+ T cells resulted in impaired Treg cell differentiation in vitro and loss of RORγt+FOXP3+ iTreg cells in the intestinal lamina propria, which increased susceptibility to microbiota-induced mucosal inflammation. In contrast, Arkadia was dispensable for Th17 cell responses. Furthermore, genetic ablation of two Arkadia substrates, the transcriptional corepressors SKI and SnoN, rescued Arkadia-deficient iTreg cell differentiation both in vitro and in vivo. These results reveal distinct TGF-ß signaling modules governing Th17 and iTreg cell differentiation programs that could be targeted to selectively modulate T cell functions.


Assuntos
Diferenciação Celular/imunologia , Proteínas Proto-Oncogênicas/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ubiquitina/imunologia
18.
Cell Rep ; 36(8): 109608, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433045

RESUMO

Differentiation of intestinal T helper 17 (Th17) cells, which contribute to mucosal barrier protection from invasive pathogens, is dependent on colonization with distinct commensal bacteria. Segmented filamentous bacteria (SFB) are sufficient to support Th17 cell differentiation in mouse, but the molecular and cellular requirements for this process remain incompletely characterized. Here, we show that intestine-draining mesenteric lymph nodes (MLNs), not intestine proper, are the dominant site of SFB-induced intestinal Th17 cell differentiation. Subsequent migration of these cells to the intestinal lamina propria is dependent on their upregulation of integrin ß7. Stat3-dependent induction of RORγt, the Th17 cell-specifying transcription factor, largely depends on IL-6, but signaling through the receptors for IL-21 and IL-23 can compensate for absence of IL-6 to promote SFB-directed Th17 cell differentiation. These results indicate that redundant cytokine signals guide commensal microbe-dependent Th17 cell differentiation in the MLNs and accumulation of the cells in the lamina propria.


Assuntos
Diferenciação Celular/imunologia , Citocinas/metabolismo , Intestinos/imunologia , Linfonodos/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/fisiologia , Citocinas/imunologia , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Ativação Linfocitária/imunologia , Camundongos
19.
PLoS Pathog ; 17(8): e1009891, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34464425

RESUMO

Exposure to the mold, Aspergillus, is ubiquitous and generally has no adverse consequences in immunocompetent persons. However, invasive and allergic aspergillosis can develop in immunocompromised and atopic individuals, respectively. Previously, we demonstrated that mouse lung eosinophils produce IL-17 in response to stimulation by live conidia and antigens of A. fumigatus. Here, we utilized murine models of allergic and acute pulmonary aspergillosis to determine the association of IL-23, IL-23R and RORγt with eosinophil IL-17 expression. Following A. fumigatus stimulation, a population of lung eosinophils expressed RORγt, the master transcription factor for IL-17 regulation. Eosinophil RORγt expression was demonstrated by flow cytometry, confocal microscopy, western blotting and an mCherry reporter mouse. Both nuclear and cytoplasmic localization of RORγt in eosinophils were observed, although the former predominated. A population of lung eosinophils also expressed IL-23R. While expression of IL-23R was positively correlated with expression of RORγt, expression of RORγt and IL-17 was similar when comparing lung eosinophils from A. fumigatus-challenged wild-type and IL-23p19-/- mice. Thus, in allergic and acute models of pulmonary aspergillosis, lung eosinophils express IL-17, RORγt and IL-23R. However, IL-23 is dispensable for production of IL-17 and RORγt.


Assuntos
Eosinófilos/imunologia , Hipersensibilidade/imunologia , Interleucina-17/metabolismo , Interleucina-23/fisiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Aspergilose Pulmonar/imunologia , Receptores de Interleucina/metabolismo , Animais , Eosinófilos/metabolismo , Eosinófilos/patologia , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Interleucina-17/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Aspergilose Pulmonar/metabolismo , Aspergilose Pulmonar/patologia , Receptores de Interleucina/genética
20.
Res Sq ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34341786

RESUMO

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate that the gut microbiome is directly affected by SARS-CoV-2 infection in a dose-dependent manner in a mouse model, causally linking viral infection and gut microbiome dysbiosis. Comparison with stool samples collected from 97 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients suggest that bacteria translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID 19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...